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We characterize solutions to the problem of mlmmlZlng a convex integral
objective function subject to a finite number of linear constraints and requiring
that the feasible functions lie in a strip [a, f31 where a and f3 are extended real
valued measurable functions. We use the duality theory of J. M. Borwein and A. S.
Lewis (Math. Programming, Series B 57 (1992), 15-48, 49-84) to show that the
solutions are of the usual form, but truncated where they leave the strip. © 1994

Academic Press. Inc.

1. INTRODUCTION

In this paper we investigate the entropy minimization problem with a
finite set of linear constraints and lattice bounds a and {3. More specifi
cally, suppose (K, IJ-) is a complete finite measure space, a and f3 two
extended real valued measurable functions, aCt) < f3(O for almost all
t E K, (t/lX-1 a collection of functions in LOO(K, IJ-) and suppose 1>:
IR ~ ( - 00, + 00] is a lower semicontinuous essentially smooth proper func
tion strictly convex on its domain with (necessarily smooth) finite conjugate
1>*. We shall use the terminology of Rockafellar [17] throughout. We seek
to charac\erize solutions in LI(K, IJ-) to

inf{f
K

1>( x( t» dlJ-( t): a .$ x .$ f3, f/( t) t/li( t) dlJ-( t) = bi , i = 1, ... , n},

(P)

where b = (b l , ••• , bn ) is a given vector in [Rn.
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The general concept of entropy maximization (or minimization as we
have formulated it) can be found in a great variety of applied fields.
Applications that fit into the form of (P) can be found, for example, in
convex interpolation [8], crystallography [15], digital signal processing [1],
and information theory [11].

Examples of functions ¢ that fit into this framework include

• Boltzmann-Shannon Entropy.

• Cost Entropy.

(

u log u
¢(u) = 0

+GO

if u > 0,
if u = 0,
if u < O.

¢(u) = cosh(u) - 1.

• Fermi-Dirac Entropy.

(

(1 - u) log( 1 - u) + u log( u )
¢(u) = 0

+00

if 0 < u < 1,

if u = 0 or u = 1,
else.

• L P Spectral Estimation (1 < P < 00).

1
¢(u) = -luI P

•
p

The additional constraint imposed when a == 0 and {3 == + 00 in the LP
spectral estimation problems has been studied and the solutions have been
characterized by :Ben-Tal, Borwein, and Teboulle [2], Goodrich, Roberts,
and Steinhardt [9, 10], Micchelli, Smith, Swetits, and Ward [13], and
others. Cole and Goodrich [7] characterize the solutions to the LP prob
lem when a = 0 and 0 < £ ~ {3 E L 00 with a Slater condition. Dontchev [8]
and Limber and Goodrich [12] have characterized solutions to the LP
estimation problem with general a and {3. Borwein and Lewis [3-5] have
studied general entropies, again with a == 0 and {3 == + GO. This work
generalizes these results to include the entropies mentioned above and
general measurable a and {3.

2. PRELIMINARY DEFINITIONS

In this section let X be a linear normed space, X* its topological dual,
and let F: X --+ ( - 00, + 00] and f: IR --+ ( - 00, + 00] be convex functions.
We define some of the basic concepts of convex analysis and some of the
conventions used in this paper.
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The function F is proper if it is somewhere finite, and the domain of F,
dam F, is the set of all points x where F is finite. f is essentially smooth
provided f is differentiable on the interior of its domain and for sf =

sup dam f and if = inf dam f

lim ['( y) = -00 if if > - 00
y ! if

and

lim ['( y) = +00 if sf < + 00.
y f sf

It is known that a differentiable convex function on IR is continuously
differentiable; see Rockafellar [17].

The set of subgradients of F at x 0 Edam F is defined to be

aF(xo) = {x* E X*: (x - xo, x*) :::; F(x) - F(xo) Vx EX}.

The subgradient inequality states that for any x* E aF(xo),

(2.1 )

Clearly, X o is a minimum of F if and only if 0 E aF(xo). If f is
everywhere finite then f is everywhere continuous and af( x) *- 0 for all
x [17]. If F is proper then the convex conjugate of F is defined as the
function F*: X * --+ ( - 00, + 00] given by

F*(x*) = sup {(x, x*) - F(x)}.
XEX

Clearly, if F:::; G then F* ~ G*. For x E X and x* E X*

F*(x*) + F(x) ~ (x, x*);

this is called the Fenchel-Young inequality [17].
For a and b extended real numbers we use the notation

(2.2)

a V b = max{a , b} and a 1\ b = min{a, b} .

We use [' for the derivative of f and VF for the Frechet derivative of F.
With the assumed conditions on 4>, it follows that 4>* is differentiable

(Rockafellar [17, Theorem 26.3]), and that

(4)') -1 = (4)*)'.

Also, since 4>* is differentiable, it is continuously differentiable.

(2.3)
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Recall that if g: IR X K ~ ( - co, + 00] is a normal convex integrand and
(K, J.L) is a complete finite measure space then

G(x) = !g(x(t), t) dJ.L(t)
K

takes on well defined values in (- 00, +00]. In particular, if g(u, t) is convex
and lower semicontinuous in u E IR for almost all t, and measurable in t
for each u with the set

{u E IR: g(u, t) < +oo}

having nonempty interior, then g is a normal convex integrand. For
example, see Rockafellar [16, Lemma 2].

For a convex set C and a point x E C we define cone(C - x) to be the
closed convex cone generated by the set C - x with vertex at the origin

cone( C - x) = {r( c - x): r ~ 0, C E C} .

The quasi relative interior [4] of a convex set C c X is

qri(C) = {x E C: cone(C - x) is a subspace}.

For example, if C = (x E O(K, J.L): 0 :-:; x a.e.} then it can be shown that
qri(C) = {x EX: 0 < x a.e.}. In any locally convex space, X o E qri(C)
whenever Xo is not a proper support of C: in L1(K, J.L) this amounts to
saying that if y E C(K, J.L) and fK(X - xo)ydJ.L ~ 0 for all x E C then
equality holds for all x E C. When the affine span of C is dense this is
equivalent to Xo E qi(C) in the sense of Limber and Goodrich [12]. In [4]
it is shown that for a convex set C with nonempty quasi relative interior
and a continuous linear map A: X ~ IR n

,

ri(A(C» =A(qri(C».

This fact will be crucial in developing our theory.
Define the continuous linear map A: L1 ~ IR n by

The adjoint of A, A*: IR n
~ L'" is given by

n

A*(A) = I: A;I/J;.
i~l

(2.4)
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Also, for x ELI C (C)*, A** x = Ax since for any A E IRn, (A, A**x) =

(A*A, x) = (A, Ax).
Finally, we shall use x, y, z to denote functions in LI(K, J.L} or C(K, J.L},

A E IR n and u, v, and w for real numbers.

3. THE INTEGRAL FUNCTIONAL

In this section we introduce our integral objective function F, and show
that its conjugate F* is Frechet differentiable.

We begin by studying the restriction 4>/ of 4> to an interval I = [a o, 130]
where ao and 130 are extended real numbers, [ao, 130] n dom 4> * 0, and

where

if u E I
if u $ I

is the indicator function of I.

LEMMA 3.1. For all u E IR, the derivative of (4)/)*, [(4)/}*r exists and is
given by

[(4)/)*]'(u) = ao V (4)*)'(u) /\ 130.

Proof Since 4> ~ 4>/, (4)/)* ~ 4>*, and so (4)/)* is everywhere finite
and a(4)/)*(v} * 0 for all v E IR. Now, since 4> is lower semicontinuous,
wE a<4>/}*(v} if and only if v E a4>/(w} and since 4> is essentially smooth,
w E int(dom 4>} n [ao, 130]. Then we have

{

( - 00, 4>' ( a 0) ]

V E (4>'( w)}

[ 4>' ( 130 ), + (0)

if w = ao > - 00,

if ao < w < 130'

if w = 130 < + 00.

By Eq. (2.3), (4),)-1 = (4)*)', and since 4>' is strictly increasing we can solve
this equation to get

{

a o
w = (4)*)'( v)

130

if v ~ 4>'( a o),

if 4>'(ao) < v < 4>'(130),

if v ~ 4>'(130).

By [17, Theorem 25.1], this completes the proof. I
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We now consider the parameterized interval I(t) = [aU), 13(1)].
Throughout the rest of this paper we shall assume:

Assumption A.

3i E L1(K,J-L) such that a ~ i ~ 13 a.e. and f. cP(i(t)) dJ-L(t) E IR,
K

(AI)

int(domcP) n (a(t),f3(t))"* 0 a.e. (A2)

LEMMA 3.2. Let ¢: IR X K ~ (- 00, + 00] be defined by ¢(u, t) =

cP(u) + i/(t)(u). Then ¢ is a normal convex integrand.

Proof The conditions of normality are easily checked. To see that

{u E IR: ¢(u, t) < +oo}

has nonempty interior a.e., we use the assumption (A2). I
We define our objective integral function F: L1(K, J-L) ~ (- 00, + 00] by

F(x) g, f cPl(t)(X(t)) dJ-L(t)
K

which is equivalent to

(3.1 )

F(x) = (fKcP(x(t)) dJ-L(t)

+00

Also,

if a(t) ~ x(t) ~ f3(t) a.e.

else.

F(x) = f ¢(x(t), t) dJ-L(t)
K

and (AI) says dom F "* 0.

LEMMA 3.3. For y E C the conjugate of Fat y is

Also, F** = F.

Proof We can apply Theorem 2 in Rockafella [16] once we verify that
¢ is a normal convex integrand and that JKcPj(y) dJ-L is finite for some
y E C'. We known ¢ is a normal convex integrand from Lemma 3.2. Now
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4J/ ~ 4J implies (4J/)* ~ 4J*, so for any Y E LOO( K, J.d,

since 4J* is continuous and 4J*( y) E CO eLI. Therefore,

By the Fenchel-Young inequality given in Eq. (2.2),

for x as in (A), and thus

7

so fK(4J/)*(Y) E 1ft In fact, fK(4JJ)*(Y) is finite for any Y E CO, a little
more than we needed. The last statement follows from Theorem 2 in [16].

I
LEMMA 3.4. Let x E L"'(K, /.L) and define

Yl(t) ~ a(t) V (4J*)'(x(t)) 1\ f3(t).

Then Yl E L'.

Proof Let y(.) ~ (4J*)'(x(·». Then Y E L'" since x E CO and (4J*Y is
continuous. Define the measurable sets

Ta = {t E K: y(t) ~ a(t)},

Tf3 = {t E K: y( t) ~ f3( t)} ,

and

T-y = {t E K: a(t) ~ y(t) ~ f3(t)}.

Then for x as in assumption (AU,

y(t)~a(t) =Yl(t) ~x(t)

x(t)~f3(t) =Yl(t) ~y(t)

and

Since x, yELl, it follows that y, E L'. I
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We can now verify that F* is Frechet differentiable.

THEOREM 3.5. The conjugate F* of F is Frechet differentiable at every
x E C. In fact, forx,h E C,

(VF*(x),h) = f [aCt) V (cP*)'(x(t» /\ l3(t)]h(t) dj.L(t).
K

Proof Fix h and x E C'(K, j.L). Let Ilhll denote I!hll", and

T(x)(t) = a(t) V (cP*)'(x(t» /\ l3(t),

then T(x) E L1 by Lemma 3.4. Consider the Frechet quotient

1
TIhU1F*(x + h) - F*(x) -(T(x),h)1

S 11~lIfKI(cP/)*(X + h) - (</J/)*(x) - T(x)hldj.L. (3.2)

We fix t and study the integrand. By Lemma 3.4,

aCt) V (</J*)'(x(t) + Ilhll) /\ l3(t) E U,
and

aCt) V (cP*)'(x(t) -llhll) /\ l3(t) ELI.

Since (</J/)* is differentiable, by the mean value theorem for functions of a
single variable there is a (}t E (0, 1) such that

I(</J/(t»)*(x(t) + h(t» - (cP/(tl(x(t» - T(x)(t)h(t)\

=\[(cPi(tS(x(t) + eth(t» - T(x)(t)]h(t)j

s Ilhll«a(t) V (cP*)'(x(t) + Ilhll) /\ l3(t»

-(aCt) V (</J*)'(x(t) -llhll) /\ l3(t»))

since (cP* Yis increasing, and

(a(t) V (</J*)'(x(t) + Ilhll) /\ l3(t»

-(aCt) V (cP*)'(x(t) -llhll) /\ l3(t» ~O a.e.

as Ilhll~O since (</J*)' is continuous and increasing. By the monotone
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convergence theorem applied to the above equation

lim f (a(t) v (cP*)'(x(t) + Ilhll) 1\ f3(t»
Ilhll--->O K

-(a(t) V (cP*)'(x(t) -llhll) 1\ f3(t» dJ.L(t)

= 0,

9

and therefore from Eq. (3.2) we see that the Frechet quotient goes to zero
as desired. I

4. THE GENERAL FORM OF THE SOLUTION

We consider the following primal problem where F, A, and b are as
defined above and we assume Assumption (A). The value of the problem
is defined as

V(P) £ inf{F(x): Ax = b}. (P)

In this section we characterize solutions to (P).
From Borwein and Lewis [4] we extract the following Fenchel duality

theorem.

THEOREM 4.1. Suppose V(P) is finite in problem (P), and b E

ri(A(dom F». If

V(D) £ sup{ (b, A) - F*(A*A): A E W} (D)

then V(P) = V(D) where the supremum is attained at some A E IR".

To interpret the constraint qualification b E ri(A(dom F» in our con
text, we use Eq. (2.4) to see that we need only check that there is a
feasible point in the quasi relative interior of the domain of F, i.e., that
there is a i E qri(dom F) such that Ai = b. (See [4].) Thus we character
ize qri(dom F).

THEOREM 4.2. Define t £ inf dom cP and u £ sup dom cPo Then

qri(dom F) = {x ELI: JKcP(x) E 1R,(a v t) < x < (13 1\ u) a.e}

(4.1 )

Proof Define M to be the right hand side of Eq. (4.1) and let X o EM.
We assume X o is a support point of M and generate a contradiction.
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Suppose y E C' is nonzero and satisfies

Vx E dom F, (4.2)

that is, y is a support functional at xo' Without loss of generality, let T be
a measurable subset of K with yet) < 0 a.e. on T. Since X o EM, there is
a compact interval in IR, [u, v] ~ (t, (T) such that

T' ~ {t E T: xo(t) E [u,u] a.e.}

has positive measure. Pick E > 0 so that v + E < (T, and define Z E L' by

z(t) = {~ ;\ (f3(t) - xo(t») if t E T,

otherwise.

Then xo(t) + z(t) .$ f3(t) a.e. on K.
Since X o + z E C(T, j.L) and 4> is continuous, it then follows that

x 0 + z E dom F and

f [(xo(t) + z(t)) -xo(t)]y(t) dj.L(t)
K

= fr[E;\ (f3(t) -xo(t))]y(t)dj.L(t) < 0

since E ;\ (f3(t) - xo(t)) > 0 and yet) < 0 a.e. on T. But this contradicts
Eq. (4.2).

The other inclusion is easier. If x = 13 ;\ (T on E a set of positive
measure, then XE' the characteristic function of E, is a support functional
in C' at x of dom F, thus x $. qri(dom F). Similar results are obtained if
x = t V a on a set F of positive measure. I

Using Eq. (2.4) and Theorems 4.1 and 4.2 we have the following
constraint qualification for problem (P):

3.£ such that AX = b, f 4>(.£) dj.L E IR, (a V t) <.£ < (13 ;\ (T) a.e.
K

(CO)

In the special case where a and 13 are constants, this constraint qualifica
tion is equivalent to

3.£ such that AX = b, a V t < X( t) < 13 ;\ (T a.e. (CO')

See Borwein and Lewis [5, Lemma 4.5]. Also note that (CO) includes
Assumption (A).
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If Asolves the dual problem (D), then since F* is differentiable we can
differentiate the maximum problem (D) with respect to A and apply
Theorem 19 in [18] to get

b = A**(VF*( A*A)) = A(VF*( A*A)) (4.3)

since VF*(A*A) E L1 by Lemma 3.4. If we let i = VF*(A*A) then we see
from (4.9) that Ai = b, so i is feasible. Also, from Theorem 3.5 we have

i = a V (cb*)'(A*A) 1\ f3 for some A E IR" (4.4)

and so i lies in the strip [a, f3]. Finally, let x be any other function such
that Ax = b. Since F** = F, by Rockafella [18, Corollary 12A], A*A E

aF(i), so i E dom F and by the subgradient inequality (2.0,

(x - i, A*A) $ F(x) - F(i).

Since Ax = b and Ai = b, i solves the minimization problem (P). Thus,
the form of the solution to (P) is given in Eq.(4.4). Compare [4, Part I,
Corollary 4.10].

We have proven the following theorem.

THEOREM 4.3. Let cb: IR ~ (-00, +00] be a proper, lower semicontinu
ous, essentially smooth function strictly convex on its domain with finite
conjugate cb*. Let (K, p.) be a complete finite measure space, let a and f3 be
extended real valued measurable functions on K, aCt} < f3(t) a.e., and let A:
L 1 ~ IR" be the continuous linear map given by (Ax)j = fKX(t)l/Jlt) dp.(t}
for the C functions {I/J)t~ I' If b E IR" is a fixed vector and

is finite, then provided (CQ) holds the unique solution to (P) is of the form

i = a V (cb*)'(A*X) 1\ f3,

where X E IR" is any solution of

and the supremum is attained.
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5. EXAMPLES

We revisit the examples in the Intmduction and characterize the solu
tions to (P) for each cb.

1. Boltzmann-Shannon. In this case the conjugate of cb is

cb*(u) = exp(u - 1),

clearly a differentiable finite function on IR. The solution to the corre
sponding entropy problem is then

x(t) = a(t) V exp(A*A(t) - 1) A f3(t).

2. Cosh Entropy. The conjugate is

cb* ( u) = u arcsinh( u) - W+1 + 1,

and the solution to the corresponding entropy problem is

x(t) = a(t) V arcsinh(A*A(t») A f3(t).

In this example if we start with

cb(u) = uarcsinh(u) - Vu 2 + 1 + 1,

then cb*(u) = cosh(u) - 1, so we could solve this entropy problem with
solution

x(t) = a(t) V sinh(A*A(t») A f3(t).

This example is something of a two-sided Boltzmann-Shannon type en
tropy.

3. Fermi-Dirac. The conjugate is

cb* ( u) = In( 1 + exp( u) ) ,

and the solution to t:Je corresponding entropy problem is

exp( A*A( t»)
x(t) = a(t) V A f3(t).

1 + exp(A*A(t»)
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4. L P Spectral Estimation. The conjugate is

13

where (l - q)(l - p) = 1. The solution to the corresponding entropy
problem is

i( t) = a( t) V IA*A( t) I
q

-
1
sign( A*A(t)) 1\ (3( t).

Now, for particular choices of a and (3 we have some results from the
literature.

5. Positive L 2 Spectral Estimation. Consider the problem in L 2(K, f.L),

inf{~llxll~: Ax = b, 0 ~ x},

as studied in [9,10,13,14] among others. With the choices 0' == 0 and
(3 == + 00 and q,(u) = lu 1

2/2 we have the same problem, and the solution
is of the form

- - +
i(t) = max{O, A*A} = (A*A)

for some A E IR n
• That is, the solution is a truncated linear function in the

I/I;'s.

6. LP Spectral Estimation with an Upper Bound. Cole and Goodrich [7]
have characterized the solution to the following problem in LP(K, jJ-). Let
{3 E C and suppose there is a feasible function x and an E > 0 such that
E ~ x ~ {3 - E. Then they characterize the solution to

inf{ ';llxll:: Ax = b, 0 ~ x ~ {3}

via a standard Lagrange multiplier theorem in C. If we let a == 0 then
our theory shows the solution is

(5.1 )

In fact, we may strengthen this result to only require an X E L P such that
o < x < {3 where {3 is now any L P function strictly positive on K. The
solution is again of the form in (5.0. Limber and Goodrich [12] have
shown that a generalization of the Lagrange multiplier theorem employed
in [7] is valid and can be used to derive this same result.

640i79il-2
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7. LP 5pectral Estimation with Lattice Bounds. More generally,
Dontchev [8] and Limber and Goodrich [12] have shown that in the case a

and f3 are any extended valued measurable functions, the solution to the
U' problem is of the form

i( t) = max{ a( t), min{ (A*A( t))q-I sign( A*A( t)), B( t)}};

a power of a linear function in the t/J;'s truncated to fit in the strip [a, f3l.
This includes the following special case: let 5, and 52 be two subsets of K
and define

a(t) = {~oo if t E 51

if t $. 5 I' {
+oo

f3(t) = ° if t E 52

if t $. 52'

This effectively restricts the feasible functions to be nonnegative on 5r,
nonpositive on 52', and unrestricted on 51 E 52' In one case the original
problem is from convex interpolation and we are minimizing Ily"112 (where
we make the change of variable x £ y") and we are forcing y to be
convex, concave, and unrestricted on 5;',52', lind 51 n 52' respectively.

If 50 == 5; n 52' "* 0 then a ¢. f3, but on 50 all feasible functions x
must be zero. Thus we can red_efine our measure space to be K \ 50 and
adjust our linear constraints accordingly. This is possible in general when
ever a = f3 on a set of positive measure, so if the assumption (Al) fails,
either the problem is infeasible, or we may adjust our constraints.

These last two examples illustrate the utility in allowing the functions a
and f3 to be extended valued.

8. Burg Entropy. The Burg [6] entropy is another popular entropy
functional. In this case

<b(u) = {-Inu
+00

and the corresponding conjugate is

if u > 0,
if us 0,

<b* (v) = { - 1 - In( - [')
+00

if u < 0,

if u ~ 0,

which does not satisfy our hypothesis that <b* is everywhere finite. Follow
ing the results in Borwein and Lewis [5], if a solution exists in L I

, it should
be of the form

1
i(t) = a(t) V /\ f3(t).

A*A( t)
(5.2)
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However, it is possible that a solution will not exist in L 1
, but rather in

(C)*. In this case the piece of the solution that is absolutely continuous
with respect to JL will be of the form in Eq. (5.2).

6. CONCLUSIONS

We have shown that the general solution to the mInImum entropy
problem with lattice bounds and a finite number of constraints can be
characterized with the duality theory of Borwein .and Lewis [4]. The
interval constraints include a great many applications, for example, shape
preserving interpolation and bandwidth limited spectral estimation.

It should also be mentioned that for most choices of a and {3 the
solutions can be easily computed numerically by solving the unconstrained
finite dimensional dual problem with an unconstrained minimization tech
nique such as Newton's method.
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